std_dev::regression::models

Trait ExponentialEstimator

source
pub trait ExponentialEstimator {
    // Required method
    fn model_exponential(
        &self,
        predictors: &[f64],
        outcomes: &[f64],
    ) -> ExponentialCoefficients;

    // Provided method
    fn boxed_exponential(self) -> Box<dyn ExponentialEstimator>
       where Self: Sized + 'static { ... }
}
Available on crate feature regression only.
Expand description

Implemented by all estimators yielding an exponential regression.

Required Methods§

source

fn model_exponential( &self, predictors: &[f64], outcomes: &[f64], ) -> ExponentialCoefficients

Model the ExponentialCoefficients from predictors and outcomes.

§Panics

The two slices must have the same length.

Provided Methods§

source

fn boxed_exponential(self) -> Box<dyn ExponentialEstimator>
where Self: Sized + 'static,

Put this estimator in a box. This is useful for conditionally choosing different estimators.

Implementations on Foreign Types§

source§

impl<T: ExponentialEstimator + ?Sized>